Tools
Register Login

You are here: Home » บทความ » 1. ไฟฟ้าพลังน้ำ (Hydroelectricity)
Monday, 17 Dec 2018

1. ไฟฟ้าพลังน้ำ (Hydroelectricity)

E-mail Print

Ariticle By : ดร.ยิ่งปลิว ศุภกิตติวงศ์ - บริษัท วายพี คอนซัลแตนท์ จำกัด -

พลังน้ำ (Hydropower)

พลังน้ำ คือ พลังหรือกำลังที่เกิดจากการไหลของน้ำ ซึ่งเป็นพลังที่มีอนุภาพมาก หากไม่สามารถควบคุมได้ พลังน้ำนั้นก็สามารถทำให้เกิดความเสียหายแก่ชีวิตและทรัพย์สินได้อย่างกว้างขวาง ดังตัวอย่างเช่น การเกิดอุทกภัยในบริเวณที่ลาดเชิงเขา หรือบริเวณที่มีความลาดชันสูง และการเกิดสึนามิ เป็นต้น ในทางตรงกันข้าม หากสามารถควบคุมพลังน้ำได้ตามแนวทางที่เหมาะสม พลังน้ำอันมหาศาลนั้น ก็สามารถนำมาใช้เป็นประโยชน์แก่มนุษยชาติได้

พลังน้ำได้ถูกใช้ประโยชน์มาแล้วหลายร้อยปี กังหันน้ำสำหรับยกน้ำขึ้นสู่ที่สูงเพื่อใช้ประโยชน์ในครัวเรือนและการชลประทาน เพื่อหมุนเครื่องจักรในโรงงานสีข้าว โรงงานทอผ้า โรงงานเลื่อยไม้ และโรงงานอุตสาหกรรมต่างๆ ในปัจจุบัน นิยมใช้ในการผลิตไฟฟ้า ซึ่งเรียกว่า ไฟฟ้าพลังน้ำ

หลักการทำงานของไฟฟ้าพลังน้ำ

ไฟฟ้าพลังน้ำ คือ ไฟฟ้าที่เกิดจากพลังน้ำ โดยใช้พลังงานจลน์ของน้ำซึ่งเกิดจากการปล่อยน้ำจากที่สูงหรือการไหลของน้ำ หรือการขึ้น-ลงของคลื่น ไปหมุนกังหันน้ำ (Turbine) และเครื่องกำเนิดไฟฟ้า โดยพลังงานที่ได้จากไฟฟ้าพลังน้ำนี้ ขึ้นอยู่กับปริมาณน้ำ ความแตกต่างของระดับน้ำ และประสิทธิภาพของกังหันน้ำและเครื่องกำเนิดไฟฟ้า กำลังไฟฟ้าและพลังงานจากพลังน้ำ สามารถคำนวณได้จากสมการ ดังนี้

Turbine Formulas

นอกจากตัวแปรที่ใช้ในการคำนวณกำลังไฟฟ้าแล้ว ควรต้องทำความรู้จัก Plant Factor ซึ่งหมายถึง สัดส่วนของพลังงานที่ผลิตได้ในช่วงเวลาหนึ่งต่อพลังงานที่คาดว่าจะผลิตได้เต็มตามศักยภาพในช่วงเวลาทั้งหมด โดยปกติทั่วไป ค่า Plant Factor จะต่ำกว่า 1 หรือ ต่ำกว่า 100% ทั้งนี้เนื่องจากการปิดโรงไฟฟ้าเพื่อซ่อมและบำรุงรักษาประจำปี นอกจากนี้ ยังผันแปรตามปัจจัยอื่นๆ อีก อาทิ ความมากน้อยของปริมาณน้ำ (แหล่งเชื้อเพลิง) และการออกแบบ หากออกแบบโรงไฟฟ้าพลังน้ำให้เดินเครื่องเป็นระยะเวลาที่ยาวขึ้น ค่า Plant Factor ย่อมสูงกว่าโรงไฟฟ้าพลังน้ำที่มีระยะเวลาเดินเครื่องที่สั้นกว่า โดยปกติทั่วไป หากโรงไฟฟ้าพลังน้ำ

มีข้อจำกัดด้านปริมาณน้ำ โรงไฟฟ้าพลังน้ำนั้น จะผลิตไฟฟ้าเพื่อตอบสนองเฉพาะในช่วงเวลาที่มีความต้องการไฟฟ้าสูงสุด เพราะเป็นช่วงเวลาที่ให้ค่าตอบแทนสูงสุด ในประเทศไทย ช่วงที่มีการใช้ไฟฟ้ามาก คือ วันทำงานในช่วงเวลา 9:00-12:00 น. 13:00-15:00 น. และ 19:00-21:00 น.

รูปแบบของไฟฟ้าพลังน้ำ

โดยทั่วไป รูปแบบของไฟฟ้าพลังน้ำที่นิยมใช้กันแพร่หลาย มี 3 ประเภท คือ

HDPW-Dam1. ไฟฟ้าพลังน้ำจากอ่างเก็บน้ำ อ่างเก็บน้ำจะทำหน้าที่รวบรวมและเก็บกักน้ำ เมื่อปล่อยน้ำจากอ่างเก็บน้ำลงสู่ที่ต่ำโดยแรงดึงดูดของโลก พลังน้ำที่เกิดจากการไหลจะหมุนกังหันน้ำ (Turbine) และเครื่องกำเนิดไฟฟ้า ในกรณีที่เป็นอ่างเก็บน้ำ
ขนาดใหญ่ จะทำให้สามารถบริหารจัดการน้ำได้สะดวก ดังนั้น ในเชิงเศรษฐศาสตร์หรือธุรกิจแล้ว โรงไฟฟ้าพลังน้ำประเภทนี้ มักผลิตไฟฟ้าในช่วงที่มีความต้องการไฟฟ้าสูง ซึ่งเป็นช่วงที่ให้ค่าตอบแทนสูง

ปริมาณไฟฟ้าที่ผลิตได้จากโรงไฟฟ้าพลังน้ำจากอ่างเก็บน้ำจะผันแปรตามปริมาณน้ำที่ปล่อยจากอ่างเก็บน้ำ และความแตกต่างระหว่างระดับน้ำในอ่างเก็บน้ำและระดับน้ำที่ปล่อย (ด้านท้ายน้ำ)

โดยทั่วไป โครงการไฟฟ้าพลังน้ำส่วนใหญ่จะเป็นในรูปแบบของไฟฟ้าพลังน้ำจากอ่างเก็บน้ำ ในประเทศไทยก็เช่นเดียวกัน เช่น โรงไฟฟ้าพลังน้ำเขื่อนภูมิพล (แม่น้ำปิง จังหวัดตาก) โรงไฟฟ้าพลังน้ำเขื่อนสิริกิติ์ (แม่น้ำน่าน จังหวัดอุตรดิตถ์) และโรงไฟฟ้าพลังน้ำเขื่อนศรีนครินทร์ (แม่น้ำแควใหญ่ จังหวัดกาญจนบุรี) เป็นต้น


HDPW-River2. ไฟฟ้าพลังน้ำแบบ Run-of-the-river โรงไฟฟ้าพลังน้ำประเภทนี้ เป็นรูปแบบที่ไม่มีอ่างเก็บน้ำเป็นองค์ประกอบ  จึงไม่มีการบริหารจัดการน้ำ  ดังนั้น  โรงไฟฟ้าพลังน้ำแบบ Run-of-the-river จะทำงานตลอดเวลาตามปริมาณน้ำที่ไหลในแม่น้ำ เนื่องจากโรงไฟฟ้าพลังน้ำแบบ Run-of-the-river มักสร้างอยู่ในบริเวณพื้นที่ค่อนข้างราบ และมีอาคารสำหรับทดน้ำให้สูงขึ้น ด้วยข้อจำกัดด้านภูมิประเทศ ทำให้ความแตกต่างระหว่างระดับน้ำที่ทดขึ้น กับระดับที่ปล่อยทางด้านท้ายน้ำมีความแตกต่างกันไม่มากนัก ดังนั้น ปริมาณไฟฟ้าที่ผลิตได้จากโรงไฟฟ้าพลังน้ำแบบ Run-of-the-river จึงผันแปรตามปริมาณน้ำเป็นสำคัญ

โรงไฟฟ้าพลังน้ำแบบ Run-of-the-river มักก่อสร้างในบริเวณที่มีปริมาณน้ำค่อนข้างมาก และมีน้ำไหลตลอดปี แต่มีภูมิประเทศไม่เหมาะสมที่จะก่อสร้างอ่างเก็บน้ำ โรงไฟฟ้าประเภทนี้ในประเทศไทย ได้แก่ โรงไฟฟ้าเขื่อนปากมูล (แม่น้ำมูล จังหวัดอุบลราชธานี)


3. ไฟฟ้าพลังน้ำแบบสูบกลับ เป็นรูปแบบการผลิตไฟฟ้าที่ตอบสนองช่วงเวลาที่มีความต้องการไฟฟ้าสูงสุด โดยการถ่ายเทน้ำระหว่างอ่างเก็บน้ำที่มีระดับแตกต่างกัน ในช่วงเวลาที่มีความต้องการไฟฟ้าน้อย ปริมาณไฟฟ้าส่วนเกินในระบบจะถูกนำมาใช้ในการสูบน้ำไปยังอ่างเก็บน้ำที่อยู่สูงกว่า เมื่อถึงช่วงเวลาที่มีความต้องการใช้ไฟฟ้ามาก น้ำจะถูกปล่อยกลับลงมายังอ่างเก็บน้ำที่อยู่ต่ำกว่าและผลิตไฟฟ้า ปริมาณไฟฟ้าที่ผลิตได้จึงผันแปรตามปริมาณน้ำ และความแตกต่างของระดับน้ำของอ่างเก็บน้ำทั้งสอง

HDPW-Pump

ตัวอย่างโรงไฟฟ้าพลังน้ำแบบสูบกลับในประเทศไทย คือ โรงไฟฟ้าเขื่อนลำตะคองชลภา-วัฒนา โดยใช้เขื่อนลำตะคอง (แม่น้ำลำตะคอง จังหวัดนครราชสีมา) ซึ่งเป็นอ่างเก็บน้ำที่มีอยู่เดิมและบริหารจัดการน้ำโดยกรมชลประทาน เป็นอ่างเก็บน้ำตัวล่าง และก่อสร้างอ่างเก็บน้ำตัวบนเพิ่มเติมบนเขายายเที่ยง รูปแบบโรงไฟฟ้าเขื่อนลำตะคองชลภาวัฒนา เป็นการเพิ่มประสิทธิภาพการใช้น้ำให้กับอ่างเก็บน้ำที่มีอยู่แล้ว และยังเพิ่มประสิทธิภาพในระบบการผลิตไฟฟ้าได้อีกด้วย

ประโยชน์ของโรงไฟฟ้าพลังน้ำ

Water Cycle-N

ทรัพยากรน้ำเป็นแหล่งเชื้อเพลิงธรรมชาติหมุนเวียนของโรงไฟฟ้า พลังงานน้ำ (Renewable Natural Resource) โดยแตกต่างจากแหล่งเชื้อเพลิงธรรมชาติประเภทอื่นๆ ซึ่งมีปริมาณจำกัด เช่น น้ำมัน ก๊าซ และถ่านหิน เป็นต้น จากวัฏจักรอุทกวิทยา เมื่อฝนตกลงมา น้ำฝนส่วนหนึ่งจะถูกเก็บกักตามที่ลุ่มต่างๆ ทั้งบนพื้นดินและตามใบไม้ต่างๆ และซึมลงสู่ใต้ดิน โดยน้ำส่วนเกินก็จะไหลลงสู่แม่น้ำ และในที่สุดก็ไหลลงสู่ทะเล สำหรับน้ำที่ไหลลงสู่ใต้ดิน บางส่วนก็ถูกขังอยู่ใต้ชั้นดินเป็นน้ำบาดาล บางส่วนก็ไหลกลับลงสู่แม่น้ำ น้ำที่อยู่บนผิวดินในที่ต่างๆ และในทะเล จะระเหยกลายเป็นไอน้ำ ซึ่งรวมถึงการคายน้ำของพืชด้วย และเมื่อมีสภาวะที่เหมาะสม ไอน้ำเหล่านั้นก็จะรวมตัวเป็นเมฆและกลั่นตัวเป็นหยดน้ำตกลงมาเป็นฝน วนเวียนตามวัฏจักรอย่างไม่มีที่สิ้นสุด

น้ำเป็นทรัพยากรธรรมชาติหมุนเวียน ไม่ต้องเสียค่าใช้จ่าย ไม่ก่อให้เกิดมลภาวะเมื่อใช้ในการผลิตไฟฟ้าพลังน้ำ นอกจากนี้ โรงไฟฟ้าพลังน้ำยังมีอายุการใช้งานค่อนข้างยาวกว่าโรงไฟฟ้าประเภทอื่นๆ ซึ่งผลิตไฟฟ้าจากน้ำมัน ก๊าซ และถ่านหิน ในปัจจุบัน โรงไฟฟ้าพลังน้ำเขื่อนภูมิพลมีอายุการใช้งานประมาณ 14-46 ปี (ติดตั้งเครื่องกำเนิดไฟฟ้าไม่พร้อมกัน มีจำนวนทั้งสิ้น 8 ชุด ชุดที่ 1 และ 2 ใช้งานในปี 2507 ชุดที่ 8 ใช้งานใน
ปี 2539) นอกจากนี้ ค่าบำรุงรักษาและค่าดำเนินการยังต่ำกว่าอีกด้วย ดังนั้น โรงไฟฟ้าพลังน้ำจึงมี
ความเหมาะสมในเชิงเศรษฐกิจสูง เมื่อเปรียบเทียบกับโรงไฟฟ้าประเภทอื่นๆ

การที่โรงไฟฟ้าพลังน้ำไม่ได้ใช้ฟอสซิลเป็นแหล่งเชื้อเพลิง จึงไม่ก่อให้เกิดก๊าซคาร์บอนไดออกไซด์ ซึ่งเป็น Greenhouse Gas และเป็นหนึ่งในหลายๆ ปัจจัยที่ทำให้เกิดภาวะโลกร้อน

อัตลักษณ์ของโรงไฟฟ้าพลังน้ำที่โดดเด่น คือ เปิดปุ๊บ ติดปั๊บ ซึ่งโรงไฟฟ้าประเภทอื่นๆ ไม่สามารถทำได้ ดังนั้น โรงไฟฟ้าพลังน้ำ จึงมีประสิทธิผลต่อการรักษาความมั่นคงของระบบไฟฟ้าในกรณีเกิดเหตุสุดวิสัย เช่น ในกรณีที่ระบบส่งเชื้อเพลิง (ก๊าซธรรมชาติ) สำหรับโรงไฟฟ้าพลังความร้อนเสียอย่างกระทันหันในช่วงวันทำงาน โรงไฟฟ้าพลังน้ำก็สามารถเข้ามาเสริมได้ทันที ซึ่งหากใช้โรงไฟฟ้าประเภทอื่นๆ ผลิตไฟฟ้าเพิ่มเติมเพื่อเสริมในส่วนที่ขาดหายไปแล้ว ก็จะต้องใช้เวลาเพื่อให้เครื่องจักรทำงานได้เต็มที่ โดยช่วงเวลาที่รอนั้น อาจทำความเสียหายให้กับเศรษฐกิจของประเทศ ตัวอย่างเช่น

Outflow_SNR

เมื่อมีปัญหาจากแหล่งผลิตก๊าซธรรมชาติยาดานาในประเทศพม่า ลดลง 1,100 ล้านลูกบาศก์ฟุตในช่วงเดือนสิงหาคม   2552   ที่ผ่านมาการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย จึงพึ่งไฟฟ้าพลังน้ำมากขึ้น โดยปล่อยน้ำจาก เขื่อนศรีนครินทร์มากขึ้นต่อเนื่อง และเป็นระยะเวลายาวขึ้น เป็นต้น

ข้อเสียของโรงไฟฟ้าพลังน้ำ

จุดอ่อนที่สำคัญที่สุดของโรงไฟฟ้าพลังน้ำ คือ ต้องมีอ่างเก็บน้ำ ซึ่งการก่อสร้างอ่างเก็บน้ำก่อให้เกิด
ความขัดแย้ง ในสังคมมากมายเนื่องจากผลกระทบต่างๆ ที่เกิดขึ้น โดยเฉพาะผลกระทบด้านสังคมกับประชาชนที่อาศัยและมีที่ดินทำกินในบริเวณพื้นที่อ่างเก็บน้ำและพื้นที่ก่อสร้าง และผลกระทบด้านสิ่งแวดล้อม โดยผลกระทบดังกล่าว เป็นหัวข้อสำคัญที่ก่อให้เกิดความขัดแย้งในสังคมระหว่างผู้ที่เห็นด้วย (ได้รับประโยชน์) และผู้ที่ไม่เห็นด้วย (เสียประโยชน์)

ผลกระทบจากการก่อสร้างอ่างเก็บน้ำ น่าจะไม่เกี่ยวข้องโดยตรงกับการก่อสร้างโรงไฟฟ้าพลังน้ำ เพราะประเทศไทยเป็นประเทศเกษตรกรรม น้ำจึงเป็นสิ่งที่จำเป็นต่อประชาชนและเศรษฐกิจของประเทศ ดังนั้น การเก็บกักน้ำเพื่อตอบสนองต่อความต้องการจึงเป็นสิ่งที่ต้องดำเนินการ โดยปกติตามธรรมชาติ ฝนจะตกไม่สม่ำเสมอตลอดทั้งปี โดยเฉลี่ยในช่วงฤดูฝน (พฤษภาคม-ตุลาคม) จะมีฝนประมาณ 80-90% ของปริมาณฝนทั้งปี และจะมีฝนเพียง 10-20% ในช่วง 6 เดือนที่เหลือ (ภาคใต้จะมีช่วงฤดูฝนยาวกว่าภาคอื่นๆ โดยสิ้นฤดูฝนประมาณเดือนธันวาคม-มกราคม) นอกจากนี้ ในช่วงฤดูฝนเองก็อาจเกิดเหตุการณ์ฝนทิ้งช่วง และด้วยความผันแปรทางธรรมชาติ ปริมาณฝนในแต่ละปีก็จะมีความแตกต่างกัน บางปีมาก บางปีน้อย บางปีปานกลาง

Flow_E-Soo

และหากโชคร้ายมีฝนน้อยติดต่อกันหลายๆ ปี ดังตัวอย่างรูปแบบน้ำท่าของลำอีซูในลุ่มน้ำแม่กลอง จังหวัดกาญจนบุรี ด้วยเหตุการณ์ธรรมชาติเหล่านี้ ไม่สามารถควบคุมหรือเปลี่ยนแปลงได้ ดังนั้น การเกิดอุทกภัยในฤดูฝนและขาดแคลนน้ำในฤดูแล้ง จึงมีโอกาสเกิดขึ้นได้ตลอดเวลาหากไม่มีเครื่องมือในการบริหารจัดการน้ำที่เหมาะสม ซึ่งในปัจจุบัน อ่างเก็บน้ำที่มีขนาดที่เหมาะสมคือเครื่องมือหนึ่งที่มีประสิทธิผลในการบริหารจัดการน้ำ โดยเก็บกักน้ำในช่วงน้ำมาก เพื่อบรรเทาอุทกภัยและเพื่อสำรองไว้ใช้ในช่วงที่ขาดแคลนน้ำ

ด้วยเหตุผลดังกล่าว การก่อสร้างอ่างเก็บน้ำจึงมีความจำเป็นเพื่อบรรเทาและแก้ไขปัญหาเรื่องน้ำของประเทศ ไม่ใช่เพื่อการผลิตไฟฟ้าพลังน้ำ แต่การติดตั้งไฟฟ้าพลังน้ำของเขื่อนต่างๆ เป็นการเพิ่มประสิทธิภาพในการใช้น้ำ เพิ่มมูลค่าน้ำ ลดภาวะมลพิษและโลกร้อน และทำให้การก่อสร้างอ่างเก็บน้ำสามารถคืนทุนได้เร็วขึ้น ดังนั้น แนวคิดในการติดตั้งโรงไฟฟ้าพลังน้ำที่อาคารองค์ประกอบโครงการชลประทานต่างๆ ที่มีอยู่ในปัจจุบัน ซึ่งการไฟฟ้าฝ่ายผลิตแห่งประเทศไทยกำลังดำเนินการอยู่โดยได้รับความร่วมมือจากกรมชลประทานนั้น จึงเป็นแนวทางที่ถูกต้อง และควรเร่งขยายการดำเนินการ

ปริมาณไฟฟ้าพลังน้ำ

เนื่องจากไฟฟ้าพลังน้ำเป็นพลังงานทางเลือกที่มีความคุ้มค่าทางเศรษฐกิจ และมีประโยชน์ในหลายๆ ด้าน ดังที่ได้กล่าวไว้แล้วในข้างต้น ดังนั้น โรงไฟฟ้าพลังน้ำจึงมีการพัฒนาอย่างกว้างขวาง ในปี 2549 ทั่วโลกมีการติดตั้งไฟฟ้าพลังน้ำรวมทั้งสิ้น 777,000 MW สามารถผลิตไฟฟ้าได้ประมาณ 2,998 TWh (ยังไม่รวม Three Gorges Dam ในประเทศจีน ซึ่งเป็นเขื่อนไฟฟ้าพลังน้ำที่ใหญ่ที่สุดในโลก) เป็นสัดส่วนประมาณ 20% ของปริมาณไฟฟ้าโลก และเป็นสัดส่วนประมาณ 88% ของปริมาณไฟฟ้าที่ผลิตจากพลังงานหมุนเวียน

หลังจากประเทศจีนก่อสร้าง Three Gorges Dam แล้วเสร็จ ประเทศจีนเป็นประเทศที่มีเขื่อนไฟฟ้าพลังน้ำใหญ่ที่สุดในโลก รองลงมา ได้แก่ Itaipu Dam ซึ่งตั้งอยู่บริเวณชายแดนระหว่างประเทศปารากวัยและประเทศบราซิล และลำดับสาม ได้แก่ Guri Dam ในประเทศเวเนซูเอลา โดยรายเละเอียดได้แสดงไว้ใน ตารางที่ 1


  ตารางที่ 1  โรงไฟฟ้าพลังน้ำที่ใหญ่ที่สุดในโลก
  โรงไฟฟ้าพลังน้ำ   ประเทศ   จำนวนชุด @ MW   กำลังติดตั้ง (MW)
1. Three Gorges Dam จีน 26,700 18,200
2. Itaibu Dam ปารากวัย-บราซิล 20 @ 700 14,000
3. Guri Dam เวเนซูเอลา 10 @ 1,020 10,200
4. Tucurui Dam บราซิล   8,400
5. Sayano-Shushenskaya Dam รัสเซีย 10 @ 640 6,400
6. Krasnoyarsk รัสเซีย   6,000

หมายเหตุ  จีนมีแผนที่จะติดตั้งเพิ่มเติมอีก 6@700 MW

ประเทศปารากวัย นอร์เวย์ บราซิล เวเนซูเอลา และแคนาดา เป็นกลุ่มประเทศที่ใช้ไฟฟ้าจากไฟฟ้าพลังน้ำเป็นส่วนใหญ่

(ตารางที่ 2) โดยประเทศปารากวัยนอกจากใช้ไฟฟ้า 100% จากไฟฟ้าพลังน้ำแล้ว ยังส่งออกอีกประมาณ 90% ของไฟฟ้าพลังน้ำที่ผลิตได้ไปยังประเทศบราซิลและประเทศอาร์เจนตินา


ตารางที่ 2  สัดส่วนการใช้ไฟฟ้าจากไฟฟ้าพลังน้ำ

ประเทศ

พลังงานไฟฟ้า (TWh)

กำลังติดตั้ง (GW)

Capacity Factor

สัดส่วนต่อไฟฟ้าทั้งหมด (%)

ปารากวัย

64.0

-

-

1,000.00

นอร์เวย์

140.5

27.528

0.49

98.25

บราซิล

363.8

69.080

0.56

85.56

เวเนซูเอล่า

86.8

-

-

67.17

แคนาดา

369.5

88.974

0.59

61.12

สวีเดน

65.5

16.209

0.46

44.34

รัสเซีย

167.0

45.000

0.42

17.64

จีน 1/

585.2

171.52

0.37

17.18

อินเดีย

115.6

33.600

0.43

15.80

ฝรั่งเศส

63.4

25.335

0.25

11.23

ญี่ปุ่น

69.2

27.229

0.37

7.21

สหรัฐอเมริกา

250.6

79.511

0.42

5.74

หมายเหตุ 1/ข้อมูลปี 2551



สำหรับประเทศไทย ไฟฟ้าพลังน้ำที่ใช้ในประเทศมาจาก 3 แห่ง ด้วยกัน คือ จากโรงไฟฟ้าพลังน้ำในความรับผิดชอบของการไฟฟ้าฝ่ายผลิตแห่งประเทศไทย โรงไฟฟ้าพลังน้ำในความรับผิดชอบของกรมพัฒนา-พลังงานทดแทนและอนุรักษ์พลังงาน และจากโรงไฟฟ้าพลังน้ำในประเทศลาว โดยในปี 2552 ไฟฟ้าที่ผลิตจากไฟฟ้าพลังน้ำที่ใช้ในประเทศมีปริมาณทั้งสิ้น 9,313 GWh ดังที่ได้แสดงไว้ใน ตารางที่ 3 ซึ่งสามารถสรุปได้ดังนี้


แหล่ง

พลังงานไฟฟ้า (GWh)

สัดส่วน (%)

การไฟฟ้าฝ่ายผลิตแห่งประเทศไทย

6,942.24

74.54

กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน

24.04

0.26

จากประเทศลาว

2,346.76

25.20

รวม

9,313.04

100.00


 

ตารางที่ 3 กำลังติดตั้งไฟฟ้าพลังน้ำในระบบไฟฟ้าของประเทศไทย (ปี 2552) (ต่อ)
โรงไฟฟ้า
จังหวัด
ชุดที่
กำลังผลิต (MW) พลังงาน (GWh)
Plant Factor
วันใช้งาน
แต่ละชุด รวม
การไฟฟ้าฝ่ายผลิตแห่งประเทศไทย
1 เขื่อนภูมิพล ตาก 1 82.20


17 พ.ค. 2507



2 82.20


15 มิ.ย. 2507



3 82.20


11 พ.ค. 2510



4 82.20


9 ส.ค. 2510



5 82.20


25 ต.ค. 2511



6 82.20


18 ส.ค. 2512



7 115.00


18 ต.ค. 2525



8 171.00 779.20 1,667.95 0.24 16 ม.ค. 2539
2 เขื่อนน้ำพุง สกลนคร 1 3.00


20 ต.ค. 2508



2 3.00 6.00 16.50 0.31 20 ต.ค. 2508
3 เขื่อนอุบลรัตน์ ขอนแก่น 1 8.40


13 มี.ค. 2509



2 8.40


13 มี.ค. 2509



3 8.40 25.20 66.94 0.30 19 มิ.ย. 2511
4 เขื่อนสิรินธร อุบลราชธานี 1 12.00


1 พ.ย. 2514



2 12.00


31 ต.ค. 2514



3 12.00 36.00 129.95 0.41 28 มี.ค. 2527
5 เขื่อนจุฬาภรณ์ ชัยภูมิ 1 20.00


29 ต.ค. 2515



2 20.00 40.00 123.01 0.35 6 พ.ย. 2515
6 เขื่อนสิริกิติ์ อุตรดิตถ์ 1 125.00


12 ม.ค. 2517



2 125.00


18 มี.ค. 2517



3 125.00


3 ก.ค. 2517



4 125.00 500.00 1,144.51 0.26 19 ก.ย. 2538
7 เขื่อนแก่งกระจาน เพชรบุรี 1 19.00 19.00

7 ส.ค. 2517
8 เขื่อนบ้านยาง เชียงใหม่ 1 0.06


1 ก.พ. 2517



2 0.06








3 0.01 0.13 0.33 0.29


9 เขื่อนศรีนครินทร์ กาญจนบุรี 1 120.00


12 ก.พ. 2523



2 120.00


26 ก.พ. 2523



3 120.00


19 มี.ค. 2523



4 180.00


25 พ.ย. 2528



5 180.00 720.00 1,465.88 0.23 19 มี.ค. 2534
10 เขื่อนบางลาง ยะลา 1 24.00


7 ก.ค. 2524



2 24.00


10 ส.ค. 2524



3 24.00 72.00 263.48 0.42 25 ต.ค. 2524
11 เขื่อนห้วยกุ่ม ชัยภูมิ 1 1.06 1.06 3.98 0.43 11 ก.พ. 2525
12 เขื่อนบ้านสันติ ยะลา 1 1.28 1.28 8.47 0.76 19 ต.ค. 2525
13 เขื่อนท่าทุ่งนา กาญจนบุรี 1 19.50


24 ธ.ค. 2525



2 19.50 39.00 192.88 0.56 7 ก.พ. 2525
14 เขื่อนบ้านขุนกลาง เชียงใหม่ 1 0.09


5 ธ.ค. 2526



2 0.09


5 ธ.ค. 2526



3 0.02 0.20 1.15 0.66 4 พ.ย. 2547
15 เขื่อนคลองช่องกล่ำ สระแก้ว 1 0.02 0.02 0.02 0.11 12 ก.ย. 2527
16 เขื่อนวชิราลงกรณ์ กาญจนบุรี 1 100.00


13 ก.พ. 2528



2 100.00


24 ธ.ค. 2527



3 100.00 300.00 1,007.97 0.38 29 ต.ค. 2527
17 เขื่อนแม่งัด เชียงใหม่ 1 4.50


19 ต.ค. 2528



2 4.50 9.00 16.31 0.21 25 ก.ย. 2528
18 เขื่อนรัชชประภา สุราษฎร์ธานี 1 80.00


21 พ.ค. 2530



2 80.00


8 เม.ย. 2531



3 80.00 240.00 484.90 0.23 23 ธ.ค. 2529
19 เขื่อนห้วยกุยมั่ง กาญจนบุรี 1 0.10 0.10 0.18 0.21 2 ก.ย. 2530
20 เขื่อนปากมูล อุบลราชธานี 1 34.00


9 ต.ค. 2537



2 34.00


2 ก.ย. 2537



3 34.00


24 มิ.ย. 2537



4 34.00 136.00 155.31 0.13 14 ส.ค. 2537
21 เขื่อนลำตะคอง ชลภาวัฒนา นครราชสีมา 1 250.00


19 ก.ค. 2547



2 250.00 500.00 192.52 0.04 19 ก.ค. 2547
รวม
3,424.19 3,424.19 6,942.24 0.23


กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน









1 คีรีธาร จันทบุรี
12.20 12.20 24.04 0.22 4 ธ.ค. 2529
รวม 12.20 12.20 24.04



ซื้อไฟฟ้าพลังน้ำจากประเทศลาว









1 Nam Ngum & Xeset



191.23



2 Theun Hinboun
1 107.00


6 ม.ค. 2541



2 107.00 214.00 1,455.66
6 ม.ค. 2541
3 Houay-Ho
1 63.00


3 ก.ย. 2542



2 63.00 126.00 250.91
3 ก.ย. 2542
4 Nam Theun 2



448.96



รวม

2,346.76



 

ในปี 2552 พลังงานไฟฟ้าที่ผลิตได้และซื้อมีปริมาณทั้งสิ้น 145,233.02 GWh โดยเป็นพลังงานไฟฟ้าพลังน้ำที่ผลิตภายในประเทศ 6,966.28 GWh หรือประมาณ 4.8% ของความต้องการพลังงานไฟฟ้าทั้งหมด

เนื่องจากประเทศมีความจำเป็นต้องการแหล่งผลิตไฟฟ้าเพิ่มเติมเพื่อรองรับความต้องการไฟฟ้าที่เพิ่มขึ้นในอนาคต การไฟฟ้าฝ่ายผลิตแห่งประเทศไทย จึงมีแผนที่จะติดตั้งโรงไฟฟ้าพลังน้ำในโครงการชลประทานต่างๆ ในปัจจุบันที่มีศักยภาพ โดยคาดว่าภายในปี 2556 จะสามารถติดตั้งไฟฟ้าพลังน้ำเพิ่มเติมได้ประมาณ 78.7 MW ดังที่ได้สรุปไว้ใน ตารางที่ 4

ตารางที่ 4 แผนการติดตั้งไฟฟ้าพลังน้ำในโครงการชลประทานปัจจุบัน
โรงไฟฟ้า ชุดที่ กำลังผลิต (MW) วันใช้งาน



แต่ละชุด รวม

1 เขื่อนเจ้าพระยา 1 6.0
ม.ค. 2554


2 6.0 12.0 ม.ค. 2554
2 เขื่อนนเรศวร 1 8.0 8.0 ต.ค. 2554
3 เขื่อนแม่กลอง 1 6.0
ม.ค. 2555


2 6.0 12.0 ม.ค. 2555
4 เขื่อนขุนด่านปราการชล 1 10.0 10.0 เม.ย. 2555
5 เขื่อนป่าสักชลสิทธิ์ 1 6.7 6.7 พ.ค. 2555
6 เขื่อนแควน้อย 1 15.0
ม.ค. 2556


2 15.0 30.0 ม.ค. 2556
รวม 78.7 78.7

สรุป

พลังน้ำเป็นทรัพยากรธรรมชาติหมุนเวียนที่มีพลังมหาศาล ซึ่งหากมีการบริหารจัดการที่เหมาะสมแล้ว นอกจากจะสามารถบรรเทาความเสียหายจากอุทกภัยแล้ว ยังมีประโยชน์อย่างอนันต์ต่อมนุษยชาติ เฉกเช่นไฟฟ้าพลังน้ำ ซึ่งเป็นพลังงานหมุนเวียนที่สะอาดและเป็นมิตรต่อภาวะแวดล้อมของโลก ดังนั้น จึงควรสนับสนุนการพัฒนาแหล่งน้ำควบคู่กับการพัฒนาไฟฟ้าพลังน้ำให้กว้างขวางมากยิ่งขึ้น

ในประเทศไทย ทัศนคติของสังคมต่อการพัฒนาไฟฟ้าพลังน้ำยังคงเป็นทัศนคติทางด้านลบ เพราะเข้าใจว่าการพัฒนาไฟฟ้าพลังน้ำเป็นการแย่งชิงทรัพยากรน้ำจากภาคการเกษตร (คนจน) ไปให้ภาคอุตสาหกรรม
(คนรวย) ซึ่งเป็นทัศนคติที่ไม่ถูกต้อง จึงควรมีการปรับเปลี่ยนทัศนคตินั้นให้ถูกต้องตามเหตุและผล เพื่อประเทศจะสามารถพัฒนาไฟฟ้าพลังน้ำได้ต่อไป อันจะทำให้การใช้ทรัพยากรน้ำเป็นไปอย่างมีประสิทธิภาพ และช่วยลดภาวะมลพิษต่างๆ ที่อาจจะเกิดขึ้นเนื่องจากการผลิตไฟฟ้าจากพลังงานความร้อนอื่นๆ ซึ่งใช้ฟอสซิลเป็นแหล่งเชื้อเพลิง

ความพยายามในการพัฒนาไฟฟ้าพลังน้ำจากโครงการแหล่งน้ำและชลประทานที่มีอยู่ในปัจจุบัน เป็นแนวทางที่ถูกต้องที่รัฐควรให้การสนับสนุน และควรมีการขยายขอบเขตการดำเนินงานให้กว้างขวางมากยิ่งขึ้น เพื่อเป็นการใช้สิ่งที่มีอยู่ในปัจจุบันให้เกิดประโยชน์สูงสุด....

{iarelatednews articleid="95,89,87"}